关于圆周率的历史资料


关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=3.125,而古埃及人使用π=3.1605。早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。

关于圆周率的历史资料

到了公元前3世纪,古希腊大数学家阿基米德第一个给出了计算圆周率π的科学方法:圆内接(或外切)正多边形的周长是可以精确计算的,而随着正多边形边数的增加,会越来越接近圆,那么多边形的周长也会越来越接近圆周长。

关于圆周率的历史资料

中国三国时期的数学家刘徽,在对《九章算术》作注时,在公元264年给出了类似的算法,并称其为割圆术。所不同的是,刘徽是通过用圆内接正多边形的面积来逐步逼近圆面积来计算圆周率的。

关于圆周率的历史资料

约公元480年,南北朝时期的大科学家祖冲之就用割圆术算出了3.141 592 6<π<3.141 592 7,这个π值已经准确到7位小数,创造了圆周率计算的世界纪录。

17世纪之前,计算圆周率基本上都是用上述几何方法(割圆术),德国的鲁道夫·范·科伊伦花费大半生时间,计算了正262边形的周长,于1610年将π值计算到小数点后35位。德国人因此将圆周率称为“鲁道夫数”。

关于π值的研究,革命性的变革出现在17世纪发明微积分时,微积分和幂级数展开的结合导致了用无穷级数来计算π值的分析方法,这就抛开了计算繁杂的割圆术。那些微积分的先驱如帕斯卡、牛顿、莱布尼茨等都对π值的计算做出了贡献。

1706年,英国数学家梅钦得出了现今以其名字命名的公式,给出了π值的第一个快速算法。梅钦因此把π值计算到了小数点后100位。

1874年,英国的谢克斯花15年时间将π计算到了小数点后707位,这是人工计算π值的最高纪录,被记录在巴黎发现宫的π大厅。

电子计算机出现后,人们开始利用它来计算圆周率π的数值,从此,π的数值长度以惊人的速度扩展着:1949年算至小数点后2037位,1973年算至100万位,1983年算至1000万位,1987年算至1亿位,2002年算至1万亿位,至2011年,已算至小数点后10万亿位。

扩展资料

“打倒”圆周率π

英国利兹大学数学院教授凯文·休斯敦举例说,如果用π计算圆形周长,那么半圆形周长为半径乘以一个π,四分之一圆形周长为半径乘以二分之一π,“计算四分之三圆形周长要稍微想一下,而不能自然得出结果”。

“如果我们用τ代替π该多么简单!”休斯敦说,“一个圆形周长就是半径乘以一个τ,半圆就是半径乘以半个τ,四分之一圆就是半径乘以四分之一τ,以此类推,不用想。”(τ是周长与半径之比,是π的两倍。)

参考资料:新华网《圆周率是怎样算出来的?》

人民网《圆周率等于6.28?》

网上报名
  • 姓名:
  • 专业:
  • 层次:分数:
  • 电话:
  • QQ/微信:
  • 地址:

文中图片素材来源网络,如有侵权请联系644062549@qq.com删除

转载注明出处://www.rule13ltd.com